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Chapter 9 Ramsey Theory (complete chaos is not possible)

Suppose people at a party. Two know each other or don’t know each other

1: Find a diagram of a party of 5 people such that no 3 people all know each other or do not know each other.

That is, we don’t see or

Solution:

2: Is it possible to find a diagram on 6 people without and ?

(Hint: Pick one person and investigate who she knows. . . )

Solution: Pick person x. Without loss of generality assume he knows at least 3 other
people. The these 3 either 1 pair know each other or non know each other - triangle is
in both cases.

Notation: K6 → K3K3 reads as “K6 arrows K3K3” and means in every coloring of edges of K6 by two colors,
there exists either K3 in the first color or K3 in the second color.

Notice that edges and non-edges can be treated as 2 colors.

Theorem (Ramsey) ∀m,n,∃p such that Kp → KmKn.

In other words, every 2-coloring of a huge graph Kp contains a monochromatic Km or Kn.

Denote smallest p by r(m,n).

3: Determine r(2, n) and r(1, n).

Solution: r(1, n) = 1 and r(2, n) = n. If one edge, is red, we have red K2. If all
edges are blue, we have blue Kn. It cannot be < n, otherwise all edges blue would not
give red K2 or blue Kn.

4: Show that r(m,n) ≤ r(m− 1, n) + r(m,n− 1). (Hint: Consider p = r(m− 1, n) + r(m,n− 1) points. Pick
any point x and study set of blue or red neighbors.)

x

Solution: By pigeonhole principle, either first part has size r(m− 1, n) or the second
has size r(m,n−1) (by pigeonhole principle). In either case, the result and x guarantee
monochromatic Km or Kn.
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Corollary The Ramsey Number r(m,n) exists and r(m,n) ≤
(
m+n−2
m−1

)
.

5: Prove the corollary by induction.

Solution: The proof is by induction on m+n. If m+n = 2, 3, then this is obviously
true.

r(m,n) ≤ r(m− 1, n) + r(m,n− 1) =

(
m+ n− 3

m− 2

)
+

(
m+ n− 3

m− 1

)
Hence by Pascal’s identity

r(m,n) ≤
(
m+ n− 2

m− 1

)
.

Calculating r(m,n) exactly is actually a very hard problem even for small m,n.
See https://www.combinatorics.org/ojs/index.php/eljc/article/view/DS1/pdf

3 4 5 6 7

3 6 9 14 18 23

4 18 25 36–41 49–61

5 43–48 58–87 80–143

6 102–165 115–298

Ramsey’s theorem can be extended to more than 2 colors. For c colors, we have Kp → Kn1Kn2 · · ·Knc .

6: Show Ramsey’s theorem for 3 colors. That is, prove that r(m,n, o) is finite (minimum p such that
Kp → KmKnKo).

Solution: The trick is to show r(m,n, o) ≤ r(m, r(n, o)) := nr. First imagine that n
and o being just one color. Let ϕ be a 3-edge-coloring if Knr . If ϕ contains Km in the
first color, we are done. Otherwise ϕ contains Kr(n,o) in the second and third color. By
Ramsey’s theorem for 2 colors, this Kr(n,o) contains a monochromatic Kn or Ko. This
argument easily generalizes to more colors.

Let G1, G2, . . . , Gr be graphs. The Ramsey number, r(G1, G2, . . . , Gr) is the smallest n such that every r-edge
coloring of Kn contains a monochromatic subgraph isomorphic to Gi in color i for some i ∈ 1 . . . r.

7: Show that r(G1, G2, . . . , Gr) is finite.

Solution: Let |V (Gi)| = ki. Then r(G1, G2, . . . , Gr) ≤ r(Kk1, Kk2, . . . , Kkr)

For particular choices of Gi, the Ramsey number may be smaller than exponential.

Proposition Let s, t be positive integers, and let T be a tree on t vertices. Then r(T,Ks) = (s− 1)(t− 1) + 1.

8: Find a 2-coloring of K(s−1)(t−1) without monochromatic copy of T in the first color and a monochromatic
copy of Ks in the second color. Or find a graph on (s− 1)(t− 1) vertices that does not contain T as a subgraph
and α(G) ≤ s− 1.

Solution: Take s−1 disjoint copies of Kt−1. Notice that this does not contain T and
α(G) = s− 1.
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9: Show that any graph G on (s− 1)(t− 1) + 1 vertices with α(G) ≤ s− 1 contains T as a subgraph.
Hints: What is χ(G)? Can you find a subgraph of G with a large minimum degree? Can you find T in it?

Solution: Because α(G) ≤ s − 1, χ(G) ≥ ((s − 1)(t − 1) + 1)/(s − 1) ≥ t. In every
graph G with χ(G) ≥ t exists a subgraph with minimum degree t− 1, why? Take such
subgraph H of G. Now every graph with minimum degree t− 1 contains any tree on t
vertices. It can be found simply by a greedy embedding algorithm. Hence H contains
T as a subgraph.

Ramsey’s theorem can be extended to coloring more than pairs of vertices. For c colors, we have

Kt
p → Kt

n1
Kt

n2
· · ·Kt

nc
,

which means that if we color all t subsets of vertices by c colors, there exists i such that there are ni vertices
where all t-subsets have color i.

One could do even an infinite version of the Ramsey’s theorem.

Theorem (Infinite Ramsey)
Let k, c be positive integers, and X an infinite set. If each k-subset of X is colored with one of c colors, then
X has an infinite monochromatic subset.

Proof The proof goes by induction on k.

10: Show the theorem is true for k = 1

Solution: We are coloring infinitely elements by c colors. Hence there must be one
color-class that has infinitely many points in it.

Now assume that each k-subsets of X are colored by one of c colors. We will create an infinite sequence
X0, X1, . . . of infinite subsets of X and choose elements xi ∈ Xi witht the following properties

1. Xi+1 ⊆ Xi \ {xi}

2. all k-subsets {xi} ∪ Z with Z ⊆ Xi+1 have the same color, which we associate to xi.

11: Show that if we have the sequence X0, X1, . . . and x0, x1, . . ., it is easy to finish the proof.

Solution: There are finitely many colors. Hence exists infinite Y ⊆ {x0, x1, . . .}
where all elements in Y have the same associated color. That means every k-subset in
Y has the same color.

12: Show how to iteratively build X0, . . . using induction on k.
Hint: Start X0 := X and pick x0 arbitrarily. How to get X1?

Solution: Color each k − 1 subset Z of Xi \ {xi} by the color of Z ∪ {xi}. By
induction, there exists an infinite monochromatic subset of Xi \ {xi} for this coloring
of k − 1 sets. We call it Xi+1 and pick xi+1 in Xi+1 arbitrarily.
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Probabilistic lower bound by Erdős r(k, k) ≥ b2k/2c for all k ≥ 3.

Consider a random coloring of edges of Kn by red and blue. That is for each edge of Kn we choose independently
uniformly at random if the edge is red or blue.

13: What is the number of edges of Kn?

Solution:
(
n
2

)
14: What is the probability that a fixed set of k vertices induces a red clique? (all edges are red)

Solution: 1

2(k2)
=
(

1
2

)(k
2) = 2−(k

2)

15: What is the probability that a fixed set of k induces a monochromatic clique? (all edges red or blue)

Solution: 21−(k
2)

16: What is the possible number of k-subsets? (candidates for monochromatic cliques)

Solution:
(
n
k

)
17: What is the expected number of monochromatic subsets of size k?
Recall expected value of X is EX =

∑
X p(X)X.

Solution:
(
n
k

)
21−(k

2)

18: Try to use n = b2k/2c and give an upper bound on the expected value.

Solution:
(
n
k

)
21−(k

2) ≤ nk

k! · 2
1−k2−k

2 = 2
k2

2

k! ·
21+

k
2

2
k2
2

= 21+
k
2

k! < 1

19: What happens if the upper bound is < 1?

Solution: There must be one an entry with value 0.

20: Open problem Find a nice proof that r(4, 5) = 25.

21: Open problem Determine r(5, 5).

22: Open problem Determine (asymptotically) r(k, k).
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